Ozonation of natural organic matter and aquatic humic substances: the effects of ozone on the structural characteristics and subsequent trihalomethane formation potential

Author:

Sadrnourmohammadi Mehrnaz1,Brezinski Kenneth2,Gorczyca Beata2

Affiliation:

1. WSP, 1600 Buffalo Pl, Winnipeg, Manitoba, Canada, R3T 6B8 and Department of Civil Engineering, University of Manitoba, Winnipeg, Canada

2. Department of Civil Engineering, University of Manitoba, 15 Gillson Street, Winnipeg, Manitoba, Canada R3T 5V6

Abstract

Abstract The effect of ozonation on the structural and chemical characteristics of natural organic matter (NOM) and its isolated humic fractions, humic acid (HA) and fulvic acid, were studied using Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR), ultraviolet/visible (UV/Vis) spectroscopy, and synchronous scanning fluorescence (SSF) spectroscopy. The results were linked to the effect of ozonation on trihalomethane formation potential (THMfp) reduction for water standards with high THM precursors. Results showed that ozonation at a dose of 1 mg ozone/mg dissolved organic carbon (DOC) was capable of reducing DOC, UV absorbance at 254 nm (UV254), and THMfp by up to 42%, 95%, and 89% for the HA water standard, respectively. The study of UV/Vis, FTIR-ATR, and SSF revealed trends showing that ozone can alter the composition of DOC in the water standards, causing a significant reduction in aromaticity. The reduction of UV254 for each ozonated sample also affirms that ozone mainly targets aromatic moieties contained in NOM. FTIR-ATR results showed that the reduction of unsaturated functional groups, including aromatic rings and C = C bonds in the water standards tested, were the main components impacted by ozone application. SSF results also revealed that ozonation decreases the fluorescence intensity of the maximum peak – as well as the whole spectra.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3