Numerical investigation of the multiphase flow patterns and removal effect in a large dissolved air flotation

Author:

Tang Jinjie1,Long Yun1,Fu Yu1,Long Xinping1,Zhang Zuti1

Affiliation:

1. 1 Key Lab of Jet Theory and New Technology of Hubei Province, School of Power and Mechanical Engineering, Wuhan University, Hubei 430072, China

Abstract

Abstract The standard k–ε model coupled with the mixture model was used to study two-phase flow in a large dissolved air flotation (DAF) unit. The numerical results can simulate fairly well the velocity vectors and air volume fraction distribution data of a DAF unit from the literature. The typical DAF structure parameters were analyzed in detail to investigate their predicted influences on the internal flow structure and removal effect. The simulations indicated that the short length of the separation zone was not conducive to the formation of a stratified flow pattern, and the turbulent kinetic energy at the bottom of the separation zone increased as the length decreased. With the increase in the height of the DAF tank, the horizontal flow structure in the separation zone would be disrupted, and the distribution range and the intensity of the turbulence kinetic energy increased. Further analysis showed that the formation of horizontal stratified flow facilitated the removal of bubbles, and the formation of stratified flow is related to the size of the DAF unit. Detailed analyses showed that the reduction of DAF height and the increase of separation zone length were beneficial to improve the bubble removal efficiency. Finally, a theoretical analysis was carried out to study the relationship between DAF parameters and the removal effect. The results revealed that when the horizontal flow structure was not destroyed and stratified flow occurred, the bubble removal efficiency was positively linearly related to the length of the separation zone. The removal efficiency increases as DAF height decreases.

Funder

national natural science foundation of china

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3