Efficient removal of perfluorinated compounds with the polyamide nanofiltration membrane and membrane fouling resistance analysis

Author:

Wu Yuyang1

Affiliation:

1. 1 College of Environment, Hohai University, Nanjing 210098, China

Abstract

Abstract Perfluorinated compounds (PFCs) are significant pollutants known for their high toxicity and resistance to natural degradation, posing a severe threat to both the global environment and human health. In this study, a polyamide (PA) membrane with an intermediate layer structure of MXene-TiO2 (referred to as MXT-NFM) was utilized for the removal of PFCs. Experimental results confirm that MXT-NFM exhibited remarkable capacity in intercepting PFCs, accompanied by the high water flux. To gain insights into the mechanisms governing membrane fouling induced by PFCs, inorganic ions, and organics, a series of fouling tests were conducted using MXT-NFM under diverse conditions. Additionally, the XDLVO theory was employed to provide a theoretical perspective on the interactions occurring during the fouling process. The findings suggest that the MXene-TiO2 intermediate layer contributed to the exceptional hydrophilicity and rough surface properties, enabling multiple functionalities. These include alleviating membrane pore plugging, improving the physical configuration of the PA layer, and effectively mitigating fouling phenomena in coexisting systems during practical applications. Moreover, the particle size of pollutant colloids and the acid–base interaction were identified as decisive factors influencing the development of membrane fouling.

Funder

National Natural Science Foundation of China

Key-Area Research and Development Program of Guangdong Province

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3