Preliminary investigation into the claims of the IBROM system

Author:

Vojdani Zahra1,Gorczyca Beata1

Affiliation:

1. Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract

Abstract Membrane filtration is commonly applied to reduce dissolved organic carbon (DOC) to control the formation of trihalomethanes (THMs); however, high levels of DOC can cause severe fouling of reverse osmosis membranes. The integrated biological and reverse osmosis membrane (IBROM) process is a combination of biological filters and reverse osmosis membranes. The IBROM process claims to remove biodegradable dissolved organic carbon (BDOC), which apparently should result in reduced membrane fouling. The goal of this research was to conduct a preliminary investigation into the claims of the IBROM system, using water collected from the Herbert water treatment plant (Saskatchewan). The plant is utilizing the IBROM for the treatment of a dugout and groundwater blend (DOC of 17.5–22.7 mg/L). The results demonstrated that BDOC concentrations did not change significantly throughout the plant. Optimized laboratory-scale coagulation with polyaluminium chlorohydrate achieved 58% removal of BDOC. Oxidation with permanganate increased the concentration of BDOC (from 5.7 to 8.8 mg/L). Overall, BDOC was effectively removed by optimized coagulation rather than the IBROM system. Moreover, the results show an inverse relationship between BDOC and THMs formation potential (THMFP) in both coagulated and oxidized water. For all concentrations, more biodegradable DOC had less tendency to form THMs based on the lower THMFP.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference29 articles.

1. Biofouling in RO system: mechanisms, monitoring and controlling;Desalination,2012

2. Study on potassium permanganate chemical treatment of discarded reverse osmosis membranes aiming their reuse;Separation Science and Technology,2013

3. American Membrane Technology Association (AMTA) 2007 Pretreatment for Membrane Processes. Available from: https://www.amtaorg.com/wp-content/uploads/12_Pretreatment.pdf (accessed 22 March 2019).

4. Amnesty International Canada 2018 The Right to Water, Our Work: Issues: Indigenous Peoples: Indigenous Peoples in Canada. Available from: https://www.amnesty.ca/our-work/issues/indigenous-peoples/indigenous-peoples-in-canada/the-right-to-water (accessed 14 January 2019).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3