Affiliation:
1. a Department of Electronics and Communication Engineering, Ponjesly College of Engineering, Alamparai, Tamil Nadu 629 003, India
2. b Department of Computing Technologies, School of Computing, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar Kattankulathur, Chennai, Tamil Nadu, India
Abstract
Abstract
Groundwater is a vital resource for human consumption, particularly in rural areas with limited access to treated water. The conventional Water Quality Index models used for this purpose have limitations related to data volatility and judgment uncertainties. To overcome these limitations, our study introduces a novel approach that employs a Fuzzy Inference System to determine the Water Quality Index. The dataset used in our research includes multiple parameters such as pH, EC, TDS, Ca, Mg, Na, K, HCO3, Cl, SO4, TH, DWQI, and other physio-chemical and chemical parameters. Our approach utilizes linguistic variables, fuzzy rules, and the hyperbolic tangent set function to handle imprecise and uncertain water quality data. By employing Fuzzy C-Means clustering, we group similar water samples based on quality parameters and map membership values to linguistic terms representing water quality categories. Suitable defuzzification methods are then applied to convert fuzzy outputs into precise results. This proposed approach provides a comprehensive framework for accurate water quality assessment, enabling informed decision-making and more reliable and precise evaluations of groundwater quality.
Subject
Water Science and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献