Examining the effectiveness of artificially replicated lake systems in predicting eutrophication indicators: a comparative data-driven analysis

Author:

Bhagowati Biswajit1,Ahamad Kamal Uddin1ORCID

Affiliation:

1. 1 Department of Civil Engineering, Tezpur University, Napaam, Assam 784028, India

Abstract

Abstract Data-driven models for the prediction of lake eutrophication essentially rely on water quality datasets for a longer duration. If such data are not readily available, lake management through data-driven modeling becomes impractical. So, a novel approach is presented here for the prediction of eutrophication indicators, such as dissolved oxygen, Secchi depth, total nitrogen, and total phosphorus, in the waterbodies of Assam, India. These models were developed using water quality datasets collected through laboratory investigation in artificially simulated lake systems. Two artificial prototype lakes were eutrophied in a controlled environment with the gradual application of wastewater. A periodic assessment of water quality was done for model development. Data-driven modeling in the form of multilayer perceptron (MLP), time-delay neural network (TDNN), support vector regression (SVR), and Gaussian process regression (GPR) were utilized. The trained model's accuracy was evaluated based on statistical parameters and a reasonable correlation was observed between targeted and model predicted values. Finally, the trained models were tested against some natural waterbodies in Assam and a satisfactory prediction accuracy was obtained. TDNN and GPR models were found superior compared to other methods. Results of the study indicate feasibility of the adopted modeling approach in predicting lake eutrophication when periodic water quality data are limited for the waterbody under consideration.

Funder

Department of Science & Technology (DST) - Science and Engineering Research Board (SERB), New Delhi

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3