Towards developing a low-cost gravity-driven arsenic filtration system using iron oxide nanoparticle-loaded PU foam

Author:

Pillai Arundhati1,Zarandi M. Amin F.2,Hussein Faten B.3,Pillai Krishna M.2,Abu-Zahra Nidal H.4

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, University of Chicago, 924 E. 57th Street BSLC, Suite 104, Chicago, IL 60637, USA

2. Mechanical Engineering Department, University of Wisconsin-Milwaukee, 3200 N Cramer St., EMS Building, Laboratory for Flow & Transport Studies in Porous Media, Milwaukee, WI 53211, USA

3. Civil and Environmental Engineering Department, Marquette University, 1637 W Wisconsin Ave., Milwaukee, WI 53233, USA

4. Material Science Department, University of Wisconsin-Milwaukee, 3200 N Cramer St., EMS Building, Room 351, Milwaukee, Wisconsin, 53211, USA

Abstract

Abstract Arsenic contamination of water sources is a global problem, affecting numerous (especially developing) countries across the world. Exposure to exorbitantly high concentrations reaching 400 parts per billion of arsenic in water sources lead to numerous health complications, including the development of respiratory, neurological, and cancerous diseases. This study focused on developing an innovative, low-cost, and gravity-driven filtration system using a novel iron oxide nanoparticle-loaded polyurethane (PU) foam by which people in developing countries may have easy access to an effective, affordable, and easily fabricated filtration system. After successfully synthesizing the new iron oxide nanoparticle-loaded PU foam, effectiveness of the foam was tested by developing a filtration system consisting of vertical polyvinyl-chloride tubing inserted with 10 and 20 cm of PU foams. Samples of arsenic-contaminated water with known concentrations of 100 and 200 ppb were run through each of the systems numerous times for one and five run cases. The system with 20 cm of PU foam and five runs successfully filtered out around 50–70% of the arsenic from the 100 and 200 ppm samples. The filtration process was quite fast (and hence practical) with each run completing in 5–10 minutes' time. Future research is expected to improve this promising start.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3