Enhancement of microbubble generation in a pressurized dissolution process by packing the nozzle with porous ceramics

Author:

Yamashita Hiroshi12,Aoyagi Hideki1,Minagawa Hisato3

Affiliation:

1. Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan

2. Energy and Environment Div, Housetec Inc., 1250 Shimoeture, Chikusei, Ibaraki, Japan

3. Mechanical Systems Engineering, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, Japan

Abstract

The pressurized dissolution method is often used for microbubble generation. However, the main disadvantage of this method is that a large amount of energy (more than 0.3 MPa) is required to generate many microbubbles, each of which have a diameter of several dozen μm. To overcome this problem, we investigated the effectiveness of porous ceramic when used as the packing material in the pressurized dissolution method. The results showed that when compared with the control (no porous ceramics), use of porous ceramics resulted in a 39% increase in the number of microbubbles. Furthermore, when this system was used for the flotation separation of artificial suspended solids and activated sludge, the level of separation achieved with porous ceramics at 0.15 MPa was the same as that achieved using no porous ceramics at 0.25 MPa. It was estimated that the use of porous ceramics led to a 40% reduction in the energy required for the dissolved air flotation, with subsequent decreases in the operating cost.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3