Affiliation:
1. Civil Engineering Program, The University of Texas-Pan American, Edinburg, TX 75839, USA
Abstract
This study tests four different types of multiphase models to determine the most appropriate model for predicting the behaviors of various types of storm water solids in a settling chamber. The Lagrangian reference frame discrete phase models of uncoupled and coupled models based on the interaction between the discrete phase and the continuous phase were tested. The rigid moving objects model providing six degrees of freedom particle motion was also tested to model non-spherical particle motion. The fourth model was a sediment transport model using the Eulerian reference frame model. This study tested five different storm water solids consisting of bulk, gross, coarse, sediment and fine which are classified by particle size and settling characteristics. Particle settling efficiency and computational time were considered in determining the most appropriate multiphase model. The coupled model provided better solid settling than the uncoupled model, but required 8.2% more computational time in this study. The Eulerian model matched settling efficiency for the high density finer solids. Although the Eulerian model showed reliable settling prediction, the Lagrangian coupled model can be an effective alternative requiring significantly reduced computational time.
Subject
Water Science and Technology,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献