Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation process

Author:

Lester Y.12,Avisar D.2,Gozlan I.2,Mamane H.1

Affiliation:

1. School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

2. The Hydro-chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

Water and wastewater effluents contain a vast range of pharmaceutical chemicals. The present study aims to determine the potential of the advanced oxidation technology UV/H2O2/O3 and its sub-processes (i.e. UV, UV/H2O2, UV/O3, O3 and H2O2/O3) for the degradation of the antibiotics ciprofloxacin (CIP) and trimethoprim (TMP), and the antineoplastic drug cyclophosphamide (CPD) from water. Creating AOP conditions improved in most cases the degradation rate of the target compounds (compared with O3 and UV alone). H2O2 concentration was found to be an important parameter in the UV/H2O2 and H2O2/O3 sub-processes, acting as •OH initiator as well as •OH scavenger. Out of the examined processes, O3 had the highest degradation rate for TMP and H2O2/O3 showed highest degradation rate for CIP and CPD. The electrical energy consumption for both CIP and CPD, as calculated using the EEO parameter, was in the following order: UV > UV/O3 > UV/H2O2/O3 > O3 > H2O2/O3. Whereas for TMP O3 was shown to be the most electrical energy efficient. Twelve degradation byproducts were identified following direct UV photolysis of CIP.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3