Treatability and fate of various phosphorus fractions in different wastewater treatment processes

Author:

Gu A. Z.1,Liu L.1,Neethling J. B.2,Stensel H. D.3,Murthy S.4

Affiliation:

1. Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA E-mail: april@coe.neu.edu; liu.l@husky.neu.edu

2. HDR Engineering Inc. Folsom, 95630, CA USA E-mail: JB.Neethling@hdrinc.com

3. Civil Engineering, University of Washington, Seattle, 98195, WA, USA E-mail: stensel@u.washington.edu

4. District of Columbia Water and Sewer Authority, 20032, Washington D.C. USA E-mail: Sudhir.Murthy@dcwasa.com

Abstract

The increasingly more stringent phosphorus (P) discharge limits, which are below the concentrations reliably achievable with currently available technologies, demand for better understanding of phosphorus removal mechanisms. This study investigated the compositional fractions of phosphorus (P) in various effluents as well as the efficacy of different levels of treatment processes for removing different fractions of P in wastewater. The results showed that BNR can effectively remove most fractions of P, with relatively higher efficiencies (>93%) towards bioavailable forms of P including soluble reactive P (sRP), particulate reactive P (pRP) portion and particulate acid hydrolysable P (pAHP) and, it showed relatively lower efficiency (78%) towards organic P. Soluble acid hydrolysable P (sAHP) was not effectively removed (<40%). Chemical P removal process was more effective for elimination of sRP, sAHP and particulate organic P (pOP), but was not as effective for removing pAHP and, it exhibited nearly no removal of dissolved organic P (DOP). We found that chemical P removal process led to a significant increase in the concentration of pRP by up to 255%, indicating that these pRP (presumably as chemically bounded P) are likely formed through chemical precipitation/co-adsorption. Only 22% and 64% of the pRP was removed through tertiary clarifier and filtration, respectively. This implies that chemical addition converts sRP into particulate-associated P, mostly as pRP that was not easily removed by sedimentation and filtration, therefore, the efficacy of chemical P removal highly depends on the effectiveness of solid and liquid separation process. As more sRP and particulate P were removed through the series of treatment processes, the percentage contribution from organic P increases with the level of treatment due to its recalcitrant nature. Our results indicated that in order to achieve extremely low effluent P levels, technologies and processes that can enhance pRP and DOP removal will be required.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3