A sewer process model as planning and management tool – hydrogen sulfide simulation at catchment scale

Author:

Vollertsen J.1,Nielsen L.2,Blicher T. D.3,Hvitved-Jacobsen T.1,Nielsen A. H.1

Affiliation:

1. Section of Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark

2. NIRAS A/S, Sortemosevej 2, 3450 Allerød, Denmark

3. NIRAS A/S, Vestre Havnepromenade 9, 9000 Aalborg, Denmark

Abstract

The collection system of a major city at the Persian Gulf was simulated for bulk water hydrogen sulfide and the release of sewer gas to the urban atmosphere. Geometry data on 870 km of sanitary sewer and data on dry weather flow entering all nodes in the catchment was exported from a Mike Urban database and imported to the sewer process model WATS. The process model then routed sewage and sewer gas through the system and simulated relevant physical, chemical and biological processes. In its non-calibrated state, the model was used as a planning tool to identify problem areas and to identify locations to install monitoring equipment and make preliminary choices for control strategies in terms of dosing of nitrate and iron salts. The monitoring equipment consisted of flow meters, level gauges, UV–Vis spectroscopes, and H2S gas sensors. Data from the first set of installed monitoring equipment were applied to calibrate and validate the model. It was illustrated how the calibrated model can be applied to assess compliance with quantitative formulated service levels and to design control strategies in terms of dosing of iron and nitrate salts.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3