Control of VOC emissions from a flexographic printing facility using an industrial biotrickling filter

Author:

Sempere F.1,Martínez-Soria V.1,Penya-roja J. M.1,Waalkens A.2,Gabaldón C.1

Affiliation:

1. Department of Chemical Engineering, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain

2. Pure Air Solutions b.v., P.O. Box 135, 8440 AC, Heerenveen, The Netherlands

Abstract

The study of an industrial unit of biotrickling filter for the treatment of the exhaust gases of a flexographic facility was investigated over a 2-year period with the objective to meet the volatile organic compound (VOC) regulatory emission limits. Increasing the water flow rate from 2 to 40 m3 h−1 improved the performance of the process, meeting the VOC regulation when 40 m3 h−1 were used. An empty bed residence time (EBRT) of 36 s was used when the inlet air temperature was 18.7 °C, and an EBRT as low as 26 s was set when the inlet temperature was 26.8 °C. During this long-term operation, the pressure drop over the column of the bioreactor was completely controlled avoiding clogging problems and the system could perfectly handle the non-working periods without VOC emission, demonstrating its robustness and feasibility to treat the emission of the flexographic sector.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3