Analyses of calcium carbonate scale deposition on four RO membranes under a seawater desalination condition

Author:

Kang Nam Wook1,Lee Seockheon2,Kim Dooil3,Hong Seungkwan4,Kweon Ji Hyang1

Affiliation:

1. Department of Environmental Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea

2. Water Environmental Center, KIST, 39-1 Hawolgok-dong, Wolsong-gil 5, Seongbuk-gu, Seoul 136-791, Korea

3. Civil Environmental Engineering, Dankook University, Jukjeon 1-dong, Yongin Si Suji-gu, Gyeonggi-Do, Seoul 448-701, Korea

4. Department of Civil, Environmental and Architectural Engineering, Korea University, 1, 5-ka, Anam-Dong, Sungbuk-Gu, Seoul 136-713, Republic of Korea

Abstract

Inorganic fouling is one of the critical operational issues in reverse osmosis membrane. Few researches investigated effects of membrane surface characteristics on inorganic fouling and on anti-scaling techniques although the fouling occurs on the membrane surface. The objective of this paper was to examine whether different characteristics of deposition of calcium carbonate solids would occur on four membranes having distinctive surface properties. A lab-scale cell reactor with a crossflow velocity was installed and two coupons were used for one type of membranes. Two feed waters were examined: concentrated synthetic seawater simulating a 30% recovery and a concentrate from a seawater RO plant in operation at Changwon, Korea. The amounts of solid deposition on the attached membranes were increased in all four membranes but the degree of deposition on each membrane was different. Various types of calcium carbonate solids were clearly detected by both XRD and SEM analyses. In general, a membrane with greater roughness and negative surface charge appeared to form more scales. This implied that membrane surface characteristics such as roughness and surface charge affected inorganic fouling, presumably by providing favourable sites for precipitation and enhancing attraction of species to the membrane surface.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3