Effect of recirculation on organic matter removal in a hybrid constructed wetland system

Author:

Ayaz S. Ç.1,Findik N.1,Akça L.2,Erdoğan N.1,Kınacı C.2

Affiliation:

1. TUBITAK-MRC (Marmara Research Center), 41470, Pbox: 21, Gebze, Kocaeli, Turkiye

2. ITU Civil Engineering Faculty, Environmental Engineering Department, 34469 Maslak, Istanbul, Türkiye

Abstract

This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 ± 4% for COD, 83 ± 10% for BOD and 96 ± 3% for suspended solids with average effluent concentrations of 9 ± 5 mg/L COD, 6 ± 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3