Affiliation:
1. Gold Coast Water, P. O. Box 5042, Gold Coast MC, Queensland 9729, Australia E-mail: xhe@goldcoastwater.com.au
2. Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand E-mail: david.wareham@canterbury.ac.nz
Abstract
Many countries have waters contaminated with both herbicides and nitrates; however, information is limited with respect to removal rates for combined nitrate and herbicide elimination. This research investigates the removal of 2,4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs). The acids were produced from an acid-phase anaerobic digester with a mean VFA concentration of 3153±801 mg/L (as acetic acid). Initially, 2,4-D degrading bacteria were developed in an SBR fed with both sewage and 2,4-D (30–100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119±0.0039 using 2,4-D alone to 0.0192±0.0079 g NO3-N/g VSS per day, when 2,4-D was combined with natural VFAs from the digester. Similarly, the specific 2,4-D consumption rate increased from 0.0016±0.0009 using 2,4-D alone to 0.0055±0.0021 g 2,4-D/g VSS per day, when using 2,4-D plus natural VFAs. Finally, a parallel increase in the percent 2,4-D removal was observed, rising from 28.33±11.88 using 2,4-D alone to 54.17±21.89 using 2,4-D plus natural VFAs.
Subject
Water Science and Technology,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献