Evaluation of a two-stage hydrothermal process for enhancing acetic acid production using municipal biosolids

Author:

Aggrey Anderson1,Dare Peter1,Lei Robert1,Gapes Daniel1

Affiliation:

1. New Zealand Forest Research, 49 Sala Street, Rotorua, New Zealand

Abstract

A two-stage hydrothermal process aimed at improving acetic acid production using municipal biosolids was evaluated against thermal hydrolysis and conventional wet oxidation process in a 600 ml Parr batch reactor. Thermal hydrolysis was conducted at 140 °C, wet oxidation at 220 °C and the two-stage process, which acted as a series combination of thermal hydrolysis and wet oxidation, at 220 °C. Initial pressure of 1 MPa was maintained in all the three processes. The results indicated that the highest acetic acid production of up to 58 mg/g dry solids feed was achieved in the wet oxidation process followed by the two-stage process with 36 mg/g dry solids feed and 1.8 mg/g dry solids feed for thermal hydrolysis. The acetic acid yield obtained by the thermal processes increased from 0.4% in the thermal hydrolysis process to 12% during the single stage wet oxidation, with the two-stage process achieving 8%. The purity of the acetic acid improved from 1% in thermal hydrolysis to 38% in the wet oxidation process. The two-stage process achieved acetic acid purity of 25%. This work demonstrated no enhancement of acetic acid production by the two-stage concept compared with the single stage wet oxidation process. This is in contrast to similar work by other researchers, investigated on carbohydrate biomass and vegetable wastes using hydrogen peroxide as the oxidant. However, the data obtained revealed that substrate specificity, reaction severity or oxidant type is clearly important in promoting reaction mechanisms which support enhanced acetic acid production using municipal biosolids.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3