Optimization of lead (II) biosorption in an aqueous solution using chemically modified aerobic digested sludge

Author:

Darvishi Cheshmeh Soltani R.1,Rezaee A.1,Shams Khorramabadi Gh2,Yaghmaeian K.3

Affiliation:

1. Environmental Health Dept, Faculty of Medical Sciences, Tarbiat Modarres University, P.O.Box: 14115-178, Tehran, Iran E-mail: rezadarvish86@yahoo.comabbasrezaee@yahoo.com

2. Environmental Health Dept, Faculty of Health, Lorestan University of Medical Sciences, P.O.Box: 441, Khorramabad, Iran E-mail: shams_lums@yahoo.com

3. Environmental Health Dept, Faculty of Health, Semnan University of Medical Sciences, P.O.Box: 373, Damghan, Iran E-mail: k_yaghmaeian@yahoo.com

Abstract

Biosorption of Pb(II) by using digested sludge obtained from a municipal wastewater treatment plant in Tehran was examined. The aims of this investigation were biosorption of Pb(II) ions onto chemically treated digested sludge with hydrogen peroxide (H2O2) solution and determination of kinetic and isotherm of biosorption. Biosorption capacity of two types of sludge (treated and untreated) for biosorption of Pb(II) ions was investigated as function of initial Pb(II) concentration and pH using batch biosorption systems. The equilibrium biosorption capacity increased with increasing of initial metal ion concentrations and pH for both of digested sludge. The pseudo-second order kinetic model was found to be slightly suitable than the pseudo-first order kinetic model to correlate the experimental data for two types of digested sludge (R2>0.9). Regarding the applicability of the isotherm models, the freundlich model was found to be suitable than the other isotherm models. According to obtained qmax from Langmuir isotherm, biosorption of Pb(II) by H2O2 treated digested sludge was found to perform better than untreated digested sludge. The maximum biosorption capacity was given 185.19 and 144.93 mgg−1 for H2O2 treated and untreated digested sludge, respectively. Also, the constant of energy (B) between the Pb(II) ions and the adsorbent surface, calculated using BET isotherm model, obtained 5401 and 3401 for H2O2 treated and untreated digested sludge, respectively. These results indicate the usefulness of H2O2 treated digested sludge as a biosorbent for Pb(II) biosorption.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3