How does the daily regulation hydropower station reduce the hydrological regime impact? A case study in upper Yellow River

Author:

Yang Xue1ORCID,Li Fengnian1,Li Shi2,Fu Xiaohua2,Luo Jungang1,Zuo Ganggang1,Xu Chong-Yu3

Affiliation:

1. a State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China

2. b Northwest Engineering Corporation Limited, Xi'an 710065, China

3. c Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, Oslo N-0316, Norway

Abstract

ABSTRACT Human activities, particularly the regulation of hydropower stations, have profoundly altered river flow patterns. While studies have extensively assessed the impact of large or multi-year regulated hydropower stations on hydrological regimes using indicators of hydrological alteration (IHA) and range of variability approach (RVA), the impact of daily regulation hydropower stations has received comparatively less attention. This study aims to evaluate the influence of daily regulation hydropower stations on hydrological regime changes, focusing on the upper Yellow River region in China. Using daily runoff data from 1954 to 2020 at the Guide station, the study compares the impacts of multi-year regulated (Longyangxia) and daily regulation (Laxiwa and Nina) hydropower stations. The Mann-Kendall test showed that 27 out of 32 Indicators of Hydrological Alteration (IHAs) had significant trends under Longyangxia operation, which reduced to 18 IHAs with the inclusion of daily regulation stations. The Range of Variability Approach (RVA) revealed that only 46.87% of IHAs exhibited high alteration from the natural regime when daily regulation was considered, down from 75.00% with Longyangxia alone. This suggests that daily regulation can mitigate the negative impacts of multi-year regulation, potentially enhancing the river's eco-hydrological health.

Funder

National Natural Science Foundation of China

Education Department of Shaanxi Province

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3