Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback

Author:

Ingildsen P.1,Jeppsson U.2,Olsson G.2

Affiliation:

1. IEA, Danfoss Analytical, Ellegaardsvej 36, DK-6400, Soenderborg, Denmark

2. IEA, Lund University, Box 118, SE-221 00 Lund, Sweden and Danfoss Analytical, Ellegaardsvej 36, DK-6400, Soenderborg, Denmark

Abstract

As the largest single energy-consuming component in most biological wastewater treatment systems, control of aeration is of great interest seen from an energy savings point of view. This paper suggests a simple way of using on-line ammonium measurements to control aeration in a pre-denitrification plant by controlling the dissolved oxygen setpoint. The controller works primarily by feed-forward based on an ammonium sensor located at the head of the aerobic process part. Using online in-situ sensor measurements directly from the process have the important advantage over effluent measurements that there is no or very short time delay for information. The controller has been implemented in a full-scale wastewater treatment plant for a period of 35 days. During the experiment two identical activated sludge lines were used. The controller was implemented in one line, while the other line worked as a reference for comparison. The preliminary results indicate that the described control strategy leads to energy savings for the aeration in the region of 5–15%, while maintaining approximately the same effluent quality as in the reference line. Even higher energy savings can probably be achieved by optimising the controller. An automatic procedure for updating the controller parameters based on dynamic effluent ammonium measurement has been tested.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3