Anaerobic digestion: concepts, limits and perspectives

Author:

Schink B.1

Affiliation:

1. University of Konstanz, Department of Biology, PO Box 55 60, D-78457 Konstanz, Germany

Abstract

Anaerobic degradation processes are faced with limitations with respect to reaction energetics and reaction kinetics. The small amount of energy available in methanogenic degradation of complex organic compounds allows in most cases only the conservation of minimum amounts of energy in the lowest range of energy exploitable by biochemical reactions for ATP-synthesis. This limit has to be defined in the range of 1/3–1/4 of an ATP unit, or 15–20 kJ per mol reaction. Such small amounts of energy are exploited efficiently by syntrophic microbial communities co-operating e.g. in fatty acid conversion to methane and CO2. Methanogens also set the stage for efficient conversion of sugars or amino acids, and channel electron fluxes to the utmost efficiency. Kinetic limitations are set by the inertness of certain compounds, e.g. hydrocarbons, to react in the absence of a strong oxidant. New reactions have been found recently which activate such compounds, e.g. aromatic hydrocarbons such as toluene, xylenes, naphthalene, methane, or ammonia. Refined techniques for analysis of microbial activities in ill defined natural environments such as digestive tracts of small invertebrates or polluted aquifers have shown an amazing capacity for anaerobic or oxygen-limited degradation processes that are still to be exploited. Thus, anaerobic digestion is still a matter of fast increasing knowledge, both on the side of basic research as well as on the side of application in treatment of soil, waste materials, or in understanding complex living communities.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3