Effect of different carbon sources on aerobic storage by activated sludge

Author:

Beccari M.1,Dionisi D.1,Giuliani A.1,Majone M.1,Ramadori R.2

Affiliation:

1. Department of Chemistry, University of Rome ‘La Sapienza’, p.le A. Moro 5, 00185 Rome, Italy

2. Water Research Institute, National Research Council, via Reno1, 00198 Rome, Italy

Abstract

A study of substrate removal by real activated sludge with several synthetic substrates (acetate, ethanol, glutamic acid) and wastewater (raw and filtered) was carried out. Substrate, stored compounds (polyhydroxyalkanoates, PHA and internal carbohydrates), ammonia and oxygen uptake rate (OUR) were analytically determined. Polyhydroxybutyrate (PHB) was stored when the substrate was acetate or ethanol, while no appreciable formation of storage compound was detected using glutamic acid. A low amount of PHB was also formed in tests with raw and filtered wastewater which was probably mainly due to its acetate content. As far as the sum of storage and growth (indirectly estimated through ammonia consumption) did not match the overall solids formation, other unidentified mechanisms of substrate removal were likely to occur (biosorption, accumulation and/or storage of unidentified compounds). ASM3 and two derived models were used in the interpretation of experimental data with reference to synthetic substrates. With reference to synthetic substrates ASM3 can well describe the experimental data only assuming a stored product formation much higher than the analytically detected one, whereas the model that assumes a parallel growth and storage on the substrate can well describe the observed stored product profile only assuming a direct contribution of growth much higher than estimated from ammonia consumption. The model that assumes an accumulation/biosorption stage as first step of substrate removal can better describe the whole experimentally observed behaviour. However as well as in ASM3 this implies that some fraction of removed COD is still unidentified. With reference to real wastewater where the different phenomena were mixed up due to the presence of several substrates, the different models gave similar results.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3