Affiliation:
1. Environmental Science & Engineering Division, Colorado School of Mines Golden, CO 80401-1887, U.S.A. (E-mail: jdrewes@mines.edu)
2. Institute for Food Chemistry, Technical University of Berlin, Sekr. TIB 4/3-1, 13355 Berlin, Germany (E-mail: thomas.heberer@tu-berlin.de)
Abstract
The scope of this study was directed to examine different wastewater treatment technologies (activated sludge, trickling filter, nanofiltration, reverse osmosis) at full-scale facilities in Arizona and California leading to indirect potable reuse and their capability to remove pharmaceuticals. Additionally, the fate of selected pharmaceuticals was studied during soil-aquifer treatment (SAT) at sites where secondary and tertiary treated effluents are used for subsequent groundwater recharge. Facilities employing longer detention times during treatment (nitrifying and denitrifying plants) showed significant lower effluent concentration for analgesic drugs as compared to trickling filter or activated sludge facilities applying shorter detention times. A similar trend was observed for the lipid regulator gemfibrozil, which was significantly removed in denitrified effluents, whereas a trickling filter treated effluent exhibited concentration of 1,235 ng/L. Antiepileptic drugs, such as carbamazepine and primidone, showed no dependency on the wastewater treatment applied. None of the investigated drugs was detected in tertiary treated effluents after nanofiltration or reverse osmosis. After SAT, analgesic/anti-inflammatory drugs were efficiently removed after retention times of less than 6 months and remaining concentrations were near or below the detection limit of the analytical method. A high potential for biodegradation was also observed for anti-inflammatory drugs in groundwater recharge systems. The antiepileptics carbamazepine and primidone represented the most dominant of all investigated drugs in well treated domestic effluents (nitrifying/denitrifying plants). Removal of carbamazepine and primidone did not seem to occur during travel times of more than 6 years in the subsurface.
Subject
Water Science and Technology,Environmental Engineering
Cited by
182 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献