High salinity wastewater treatment using yeast and bacterial membrane bioreactors

Author:

Dan N.P.1,Visvanathan C.1,Polprasert C.1,Ben Aim R.12

Affiliation:

1. Urban Environmental Engineering and Management Program, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, 12120 Thailand

2. Institut National des Sciences Appliquees, Toulouse, France

Abstract

Two laboratory-scale membrane bioreactor systems were investigated to treat high salinity wastewater containing high organic (5,000 mg/L COD) and salt content (32 g/L NaCl), namely: (1) the Yeast Membrane Bioreactor (YMBR) and; (2) Yeast pretreatment followed by Bacterial Membrane Bioreactor (BMBR). In the YMBR system, experimental runs were conducted with a mean biomass concentration of 12 g MLSS/L. Here the maximum COD removal rate of 0.93 g COD/g MLSS.day was obtained at F/M of 1.5 g COD /g MLSS.d. Whereas, the BMBR system was operated with a biomass concentration of up to 25 g MLSS/L, resulting in maximum COD removal rate of 0.32 kg COD /kg MLSS.day at F/M ratio of 0.4. In comparison to BMBR, YMBR could obtain higher COD removal rate at higher organic loading, indicating the potential of a yeast reactor system to treat high salinity wastewater containing high organic concentration. Transmembrane pressure in BMBR was progressively increased from 2 to 60 kPa after 12 d, 6 d and 2 d at a hydraulic retention time (HRT) of 14 h, 9 h and 4 h, with average biomass concentration of 6.1, 15 and 20 g MLSS/L, respectively. Whereas the transmembrane pressure in YMBR has increased from 2 to 60 kPa only after 76 days of operation, with an average biomass concentration of 12 MLSS/L and an operating HRT range of 5-32 h.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3