On-line determination of nitrite in wastewater treatment by use of a biosensor

Author:

Nielsen M.1,Revsbech N.P.1,Larsen L.H.2,Lynggard-Jensen A.3

Affiliation:

1. Department of Microbial Ecology, University of Aarhus, bd. 540, DK-8000 Aarhus C, Denmark

2. Unisense A/S, Science Park Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark

3. Danish Hydraulic Institute, Research Park Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark

Abstract

A newly developed biosensor for nitrite having a 90% response time of about 1 min was used to monitor nitrite concentration in activated sludge exposed to oxic/anoxic cycles. The NO2− biosensor contains bacteria that reduce NO2−, but not NO3−, to N2O that is subsequently monitored by a built-in electrochemical sensor. Nitrite plus nitrate (NOx−) was simultaneously monitored by a NOx− biosensor. The maximum operational lifetime of the NO2− biosensor was 6 weeks, but much longer lifetimes can be expected as malfunctioning by the 3 sensors used for longer periods was due to either mechanical damage or ineffective internal sterilization during the construction. Insufficiently sterilized sensors became sensitive also to NO3− after some time due to development of NO3−-reducing bacterial populations within the sensor. The fraction of NO2− as compared to NO3− in the activated sludge was very dependent on prehistory, actual loading, and aeration. During balanced operation with NH4+ being exhausted during the later parts of the aerobic cycle, NO2− increased in concentration up to about 50 μM during the early part of the aeration cycle until NH4+ became limiting. At that time the NO2− concentration decreased to low levels. Under some operating conditions a peak of NO2− also appeared in the beginning of the anoxic period. NO2− and NO3− were depleted simultaneously during the anoxic period.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3