Oxygen-limited nitrogen removal in a lab-scale rotating biological contactor treating an ammonium-rich wastewater

Author:

Pynaert K.1,Wyffels S.2,Sprengers R.1,Boeckx P.2,Van Cleemput O.2,Verstraete W.1

Affiliation:

1. Laboratory for Microbial Ecology and Technology (LabMET), Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

2. Laboratory for Applied Physical Chemistry, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

Abstract

A lab-scale Rotating Biological Contactor (RBC) was operated with the purpose of oxygen-limited (autotrophic) nitrification–denitrification of an ammonium-rich synthetic wastewater without Chemical Oxygen Demand (COD). Based on the field observations that RBCs receiving anaerobic effluents come to anoxic ammonium removal, the RBC was inoculated with methanogenic sludge. Some 100 days after the addition of the anaerobic sludge to the reactor as a possible means of a rapid initiation of the nitrogen (N) removal process, a maximum ammonium removal of 1,550 mg N m−2 d−1 was achieved. Batch tests with 15N labeled ammonium and nitrite indicated that a large part of that N was removed via oxygen-limited oxidation of ammonium with nitrite as the electron acceptor. The other part was removed via conventional denitrification, presumably with COD released from lysis of cells. Species identification of the most abundant microorganisms revealed that Nitrosomonas spp. were the dominant ammonium-oxidizers in the sludge. Thus far, the molecular characterization of the sludge could not show the presence of Planctomycetes among the most dominant species. Overall this experiment confirms the property of the RBC system to remove ammonium to nitrogen gas without the use of heterotrophic carbon source.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3