Combined denitrification and excess biological phosphorus removal in discontinuous operated biofilm systems

Author:

Brandt D.1,Sieker C.2,Hegemann W.1

Affiliation:

1. Institut für Technischen Umweltschutz, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

2. Berliner Wasserbetriebe

Abstract

The sorption-denitrification-P-removal (S-DN-P) process combines biological excess P-removal (BEPR) and denitrification using immobilized biomass. The accumulation of denitrifying polyP organisms is achieved by sequencing anaerobic/anoxic conditions. The immobilized biomass is in alternating contact with primary treated wastewater (anaerobic sorption-phase) and nitrified wastewater (denitrification phase). In the sorption phase, P-release takes place and readily biodegradable organic substrate, e.g. volatile fatty acid, is taken up and stored by polyP accumulating organisms (PAO). In addition to this, other organic matter is physically/chemically adsorbed in the biofilm structures. In the denitrification phase, the biomass denitrifies the stored and adsorbed organic substrate and, at the same time, P-uptake and polyP formation occurs. This paper presents results of investigations at laboratory and half-technical scale. At laboratory scale different types of carriers were tested regarding their suitability for the S-DN-P-process. In half-technical scale a biofilter and a moving bed reactor (MBR) were tested. In the biofilter a stable removal of nitrate and phosphate was achieved. However, it was not possible to achieve similar results in the MBR process. Especially the release and uptake of phosphate showed no clear tendency although the uptake of acetate was good. Reasons for this could be the accumulation of glycogen accumulating organisms which impair the metabolism of PAO.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3