Long-term evaluation of gauge-adjusted precipitation estimates from a radar in Norway

Author:

Abdella Yisak1,Alfredsen Knut1

Affiliation:

1. Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, S.P. Andersensvei 5, N-7491 Trondheim, Norway

Abstract

The implementation of weather radars in Norway by the Norwegian Meteorological Institute (met.no) has made radar a potential tool to improve hydrologic predictions through the use of distributed precipitation input. Met.no supplies gauge-adjusted quantitative hourly radar precipitation estimates. A key concern regarding the use of radar precipitation estimates in hydrology is their accuracy. In this study, the precipitation estimates from the Rissa radar in Norway were evaluated through a comparison with observations from 112 gauges used in the adjustment (dependent) and 15 gauges not included in the adjustment (independent). The comparison with daily measurements from the dependent gauges showed a decline in the radar's detection probability beyond a range of about 140 km, with a more severe decline in winter. The deviations between radar- and gauge-conditional mean precipitation were significantly higher in summer than in winter. There was an overestimation at most of the gauge locations during summer, while there were more underestimations during winter. A dependence of accuracy on range was identified from the spatial distribution of the Efficiency Index and mean absolute difference. The evaluation against the independent gauges revealed trends mostly similar to the ones obtained from comparison with the dependent gauges. The radar estimates exhibited better agreement with gauge measurements during winter. The main reasons for the errors remaining in the gauge-adjusted precipitation estimates are the absence of correction for the vertical profile of reflectivity, the use of average monthly adjustment factors, derivation of these factors using data from previous years and the use of a single reflectivity–precipitation rate (Z–R) relation.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3