Removal of bacteria, protozoa and viruses through a multiple-barrier household water disinfection system

Author:

Espinosa-García A. C.1,Díaz-Ávalos C.2,Solano-Ortiz R.3,Tapia-Palacios M. A.3,Vázquez-Salvador N.3,Espinosa-García S.3,Sarmiento-Silva R. E.4,Mazari-Hiriart M.3

Affiliation:

1. Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior Ciudad Universitaria, Coyoacán 04510, Distrito Federal, México

2. Instituto de Investigaciones en Matemáticas y Sistemas, UNAM, Circuito Escolar Ciudad Universitaria, Coyoacán 04510, Distrito Federal, México

3. Instituto de Ecología, UNAM, Circuito Exterior Ciudad Universitaria, Coyoacán 04510, Distrito Federal, México

4. Facultad de Medicina Veterinaria y Zootecnia, UNAM, Circuito Exterior Ciudad Universitaria, Coyoacán 04510, Distrito Federal, México

Abstract

Municipal water disinfection systems in some areas are not always able to meet water consumer needs, such as ensuring distributed water quality, because household water management can be a contributing factor in water re-contamination. This fact is related to the storage options that are common in places where water is scarce or is distributed over limited time periods. The aim of this study is to assess the removal capacity of a multiple-barrier water disinfection device for protozoa, bacteria, and viruses. Water samples were taken from households in Mexico City and spiked with a known amount of protozoa (Giardia cyst, Cryptosporidium oocyst), bacteria (Escherichia coli), and viruses (rotavirus, adenovirus, F-specific ribonucleic acid (FRNA) coliphage). Each inoculated sample was processed through a multiple-barrier device. The efficiency of the multiple-barrier device to remove E. coli was close to 100%, and more than 87% of Cryptosporidium oocysts and more than 98% of Giardia cysts were removed. Close to 100% of coliphages were removed, 99.6% of the adenovirus was removed, and the rotavirus was almost totally removed. An effect of site by zone was detected; this observation is important because the water characteristics could indicate the efficiency of the multiple-barrier disinfection device.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3