Calculating Irradiance Penetration into Water Bodies from the Measured Beam Attenuation Coefficient, II: Application of the Improved Model to Different Types of Lakes

Author:

Arst Helgi1,Erm Ants1,Reinart Anu1,Sipelgas Liis1,Herlevi Antti2

Affiliation:

1. Estonian Marine Institute, Tallinn 10137, Estonia

2. Div. of Geophysics, University of Helsinki, FI-00014, Finland

Abstract

The method suggested earlier for estimating the spectra of diffuse attenuation coefficient of light in the water bodies relying on the beam attenuation coefficient measured from water samples, was improved and applied to different types of lakes. Measurement data obtained in 1994-95 and 1997-98 for 18 Estonian and Finnish lakes were used. The spectra of two characteristics were available for our investigations: 1) beam attenuation coefficient estimated from water samples in the laboratory with a spectrophotometer Hitachi U1000; 2) vertical irradiance (diffuse) attenuation coefficient measured in situ with an underwater spectroradiometer LI 1800UW. A total of 70 spectra were considered. Relying on these data the parameters of our earlier model were changed. The criterion of the efficiency of the new version of our model is the coincidence of the spectra of diffuse attenuation coefficient derived from Hitachi U1000 data (Kdc) with those obtained by underwater irradiance measurements (Kdm). Correlation analysis of the model's results gave the relationship Kdm=1.0023Kdc with correlation coefficient 0.961. The respective values of mean relative difference and standard deviation were 5.4% and 0.55 m−1. This method may be useful in conditions where in situ measuring of underwater irradiance spectra cannot be performed because of weather conditions. As the measurement of the underwater radiation field is often a complicated and expensive procedure, our numerical method may be useful for estimating the underwater light climate.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3