Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: a state-of-the-art review

Author:

Janga Reddy M.1,Nagesh Kumar D.2

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

2. Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India

Abstract

Abstract During the last three decades, the water resources engineering field has received a tremendous increase in the development and use of meta-heuristic algorithms like evolutionary algorithms (EA) and swarm intelligence (SI) algorithms for solving various kinds of optimization problems. The efficient design and operation of water resource systems is a challenging task and requires solutions through optimization. Further, real-life water resource management problems may involve several complexities like nonconvex, nonlinear and discontinuous functions, discrete variables, a large number of equality and inequality constraints, and often associated with multi-modal solutions. The objective function is not known analytically, and the conventional methods may face difficulties in finding optimal solutions. The issues lead to the development of various types of heuristic and meta-heuristic algorithms, which proved to be flexible and potential tools for solving several complex water resources problems. This paper provides a review of state-of-the-art methods and their use in planning and management of hydrological and water resources systems. It includes a brief overview of EAs (genetic algorithms, differential evolution, evolutionary strategies, etc.) and SI algorithms (particle swarm optimization, ant colony optimization, etc.), and applications in the areas of water distribution networks, water supply, and wastewater systems, reservoir operation and irrigation systems, watershed management, parameter estimation of hydrological models, urban drainage and sewer networks, and groundwater systems monitoring network design and groundwater remediation. This paper also provides insights, challenges, and need for algorithmic improvements and opportunities for future applications in the water resources field, in the face of rising problem complexities and uncertainties.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

Reference238 articles.

1. Marriage in honey bees optimisation: a haplometrosis polygynous swarming approach,2001

2. Hydrograph-based storm sewer design optimization by genetic algorithm;Canadian Journal of Civil Engineering,2006

3. Multimodal optimization by covariance matrix self-adaptation evolution strategy with repelling subpopulations;Evolutionary Computation,2017

4. Quality gain analysis of the weighted recombination evolution strategy on general con-vex quadratic functions;Theoretical Computer Science,2018

5. Assessing the effects of climate change on water quantity and quality in an urban watershed using a calibrated stormwater model;Water,2017

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3