Estimation of potential nutrient fluxes from the Wadi Gaza catchment into the Mediterranean Sea with emphasis on flooding events

Author:

Al-Najjar Hassan1ORCID,Purnama Anton2,Özkan Korhan3

Affiliation:

1. a Hashim Sani Centre for Palestine Studies, Faculty of Business and Economics, University of Malaya, Kuala Lumpur, Malaysia

2. b Department of Mathematics and Statistics, Sultan Qaboos University, Muscat, Oman

3. c Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey

Abstract

AbstractThe coastal catchment of Wadi Gaza is the main surface water basin that flows downstream to Gaza's coastal plain zone and drains into the Mediterranean Sea. The model-based assessment of the Wadi Gaza hydrological system is an essential endeavor for more efficient management of water resources and ensuring water security in terms of climate changes and anthropogenic processes. The hydrological simulation of the basin was performed using the SWAT model between 1984 and 2020. The outputs of the simulation predicted an average discharge that varies between zero in the summer months and about 15 m3/s in the winter with a maximum recorded discharge of about 130 m3/s. The model predicted average sediment and nutrient discharge to the sea as 3673, 177, and 62 tons per month of sediments, total nitrogen (TN), and total phosphorus (TP), respectively. The average dissolved inorganic nitrogen discharges were predicted to be 4, 13, and 1 tons per month for Nitrate (NO3), Ammonium (NH4), and Nitrogen dioxide (NO2), respectively during the rainy season. The constructed model is used to predict flood volumes and associated TN and TP for return periods (T) of 2, 25, 50, and 100 years. These return periods corresponded to total water discharges of 18, 91, 105, and 127 m3/s, respectively, accounting for 1,142, 5,773, 6,915, and 8,059 tons of TN, and 414, 2,092, 2,505, and 2,919 tons, of TP respectively.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3