Hydrologic regionalization of non-stationary intensity–duration–frequency relationships for Indian mainland

Author:

Mohan Meera G1,AR Akhilesh1,S Adarsh1ORCID,S Badarinadh1,Krishnan Ajeesh1,Rajan Anand1

Affiliation:

1. TKM College of Engineering, Kollam-691005, APJ Abdul Kalam Technological University, Thiruvananthapuram, Kerala, India

Abstract

Abstract Intensity–duration–frequency (IDF) curve is one of the important hydrologic tools used for the design of hydraulic infrastructure. The static return period assumption of precipitation extremes is invalid in a changing climate environment, and the underestimation of rainfall intensity may lead to the failure of infrastructure in extreme events. This study first developed the non-stationary (NS) IDF curves for six selected locations in India based on sub-daily station data based on time-dependent estimates of five combinations of Generalized Extreme Value (GEV) distribution parameters. Then, in order to identify the critical regions of rainfall non-stationarity, the IDF curves were developed for 357 grid points over India using the daily gridded data for the period 1951–2016 at 1° × 1° resolution. The comparison of spatial patterns of rainfall intensity estimates under stationary and non-stationary showed that about 23% of grids showed an overestimation of NS rainfall over their stationary counterparts by at least 15%. About 32 grid locations which showed at least 15% overestimation of rainfall under an NS case displayed a significantly increasing rainfall trend. The majority of the grids with larger deviation of non-stationary rainfall estimates over stationary values are located in India's eastern regions and coastal belts.

Funder

Department of Science and Technology Government of India

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3