Application of machine learning approaches in the computation of energy dissipation over rectangular stepped spillway

Author:

Pujari Saurabh1,Kaushik Vijay1ORCID,Awasthi Noopur1,Gupta Shailesh Kumar1,Kumar S. Anbu1

Affiliation:

1. Department of Civil Engineering, Delhi Technological University, Delhi 110042, India

Abstract

Abstract The stepped spillway of a dam is a crucial element that serves multiple purposes in the field of river engineering. Research related to flood control necessitates an investigation into the dissipation of energy over stepped spillways. Previous research has been conducted on stepped spillways in the absence of baffles, utilizing diverse methodologies. This study employs machine learning techniques, specifically support vector machine (SVM) and regression tree (RT), to assess the energy dissipation of rectangular stepped spillways incorporating baffles arranged in different configurations and operating at varying channel slopes. Empirical evidence suggests that energy dissipation is more pronounced in channels with flat slopes and increases proportionally with the quantity of baffles present. Statistical measures are employed to validate the constructed models in the experimental investigation, with the aim of evaluating the efficacy and performance of the proposed model. The findings indicate that the SVM model proposed in this study accurately forecasted the energy dissipation, in contrast to both RT and the conventional method. This study confirms the applicability of machine learning techniques in the relevant field. Notably, it provides a unique contribution by predicting energy dissipation in stepped spillways with baffle configurations.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

Reference33 articles.

1. An experimental investigation of energy dissipation for stepped spillways with different flow conditions;Math. Modell. Eng. Probl.,2023

2. Experimental study of increasing energy dissipation on stepped spillway;J. Kerbala Univ.,2015

3. Investigation of flow energy dissipation over different stepped spillways;J. Am. Appl. Sci.,2005

4. Hydraulic design of stepped spillways;J. Hydraul. Eng.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3