The SHARON®-Anammox® process for treatment of ammonium rich wastewater

Author:

van Dongen U.1,Jetten M. S.M.12,van Loosdrecht M. C.M.1

Affiliation:

1. Department of Biotechnology, Faculty of Applied Sciences, Delft Univ. of Technology, Julianalaan 67, NL 2828 BC Delft

2. Present adress: Dept. of Microbiology, Faculty of Science, Univ. of Nijmegen, NL 6525 ED Nijmegen, the Netherlands

Abstract

The treatment of ammonium rich wastewater, like sludge digester effluent, can be significantly improved when new biotechnological processes are introduced. In this paper, the combination of a partial nitrification process (SHARON®) and anoxic ammonium oxidation (Anammox®) process for the treatment of ammonia rich influents is evaluated. Herein the combined process has been studied with sludge recycle liquor from the WWTP Rotterdam-Dokhaven. The SHARON process was operated stably for more than 2 years in a 10 l CSTR under continuous aeration with a HRT of 1 day. The ammonia in the sludge liquor was converted by 53% to nitrite only. During the test period no formation of nitrate was observed. The effluent of the SHARON process was ideally suited as influent for the Anammox reactor. The Anammox process was operated as a granular sludge SBR-process. More than 80% of the ammonia was converted into dinitrogen gas at a load of 1.2 kgN/m3 per day. Planctomycete-like bacteria dominated the mixed community of the Anammox reactor, and only a small percentage of the population consisted of aerobic ammonium-oxidizing bacteria. This showed that the ammonium-oxidizers in the effluent of the SHARON process did not accumulate in the SBR. The test period showed that the combined SHARON-Anammox system can work stably over long periods and the process is ready for full-scale implementation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 697 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3