Acetate injection into anaerobic settled sludge for biological P-removal in an intermittently aerated reactor

Author:

Ahn K. H.12,Yoo H.3,Lee J. W.2,Maeng S. K.2,Park K. Y.2,Song K. S.2

Affiliation:

1. Author to whom all correspondence should be addressed. Tel: 82-2-958-5842 Fax: 82-2-958-5839 E-mail: khahn@kistmail.kist.re.kr)

2. Enviroment and Process Technology Division, Korea Institute of Science and Technology (KIST) P.O. Box 131 Cheongryang, Seoul, Korea, 136-650 Tel: 82-2-958-5842 Fax: 82-2-958-5839 E-mail: khahn@kistmail.kist.re.kr

3. Civil and Environmental Engineering Dept. Stanford University, Stanford, CA, USA

Abstract

Injecting acetate into the sludge layer during the settling and decanting periods was adopted to enhance phosphorus release inside the sludge layer during those periods and phosphorus uptake during the subsequent aeration period in a KIST Intermittently Decanted Extended Aeration (KIDEA) process. The relationship among nitrification, denitrification and phosphorus removal was investigated in detail and analyzed with a qualitative floc model. Dependencies of nitrification on the maximum DO level during the aerobic phase and phosphorus release on residual nitrate concentration during the settling phase were significant. High degree of nitrification resulted that phosphorus release inside the sludge layer was significantly interfered with nitrate due to the limitation of available acetate and the carbon sources from influent. Such limitation was related to the primary utilization of organic substance for denitrification in the outer layer of the floc and the retarded mass transfer into the inner layer of the floc. Nevertheless, effects of acetate injection on both denitrification and phosphorus release during the settling phase were significant. Denitrification rate after acetate injection was two times as high as that before acetate injection, and phosphorus release reached about 14 mg PO43--P/g MLVSS/hr during the decanting phase after the termination of denitrification inside the sludge layer. Extremely low level of maximum DO (around 0.5 mg/L) during the aerobic phase may inhibited nitrification, considerably, and thus nearly no nitrate was present. However, the absence of nitrate increased when the phosphorus release rate was reached up to 33 mg PO43--P/g MLVSS/hr during the settling and decanting phase, and nearly all phosphorus was taken up during subsequent aerobic phase. Since the sludge layer could function as a blocking layer, phosphorus concentrations in the supernatant was not influenced by the released phosphorus inside the sludge layer during the settling and decanting period. Phosphorus removal was directly (for uptake) and indirectly (for release) dependent on the median and maximum DO concentration during the aerobic phase, and those optimal values may exist within the range from 0.2 to 0.6 mg/L and 0.4 to 1.2 mg/L, respectively.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3