Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air

Author:

Shie J.L.1,Chang C.Y.1,Lin J.P.2,Lee D.J.3,Wu C.H.4

Affiliation:

1. Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan

2. Department of Environmental Engineering, Fu-Shin Institute of Technology, Tou-Cheng, I-Lan 261, Taiwan

3. Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan

4. Department of Environmental Engineering, Da-Yeh University, Chang-Hwa 515, Taiwan

Abstract

Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8.62 and 1.09 vol. % O2 at T of 378-873 K are 31.96, 34.42 and 37.3 wt. %, respectively. From the experimental results, the improvement effects of oxygen on the qualities of the oil portion of liquid products are obvious. The above technique not only formats good quality gasoline and diesel oils but also reduces large amount of oil sludge. If the oil exists with water, it may be obtained by further separation or collected by fractional condensation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Modeling of Thermal Cracking of Oil Sludge Activated by Electromagnetic Radiation;Chemistry and Technology of Fuels and Oils;2016-05

2. Oil Sludge Treatment Processes;Chemistry and Technology of Fuels and Oils;2015-11

3. Oil Recovery from Petroleum Sludge by Solvent Extraction;Petroleum Science and Technology;2009-06-19

4. Oxidative Thermal Treatment of Oil Sludge at Low Heating Rates;Energy & Fuels;2004-07-30

5. Pyrolysis of oil sludge with additives of catalytic solid wastes;Journal of Analytical and Applied Pyrolysis;2004-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3