Water treatment by TiO2 photocatalysis and/or ultrasound: degradations of phenyltrifluoromethylketone, a trifluoroacetic-acid-forming pollutant, and octan-1-ol, a very hydrophobic pollutant

Author:

Théron P.1,Pichat P.1,Petrier C.2,Guillard C.1

Affiliation:

1. Laboratoire Photocatalyse, Catalyse et Environnement, CNRS UMR (IfoS), Ecole Centrale de Lyon, BP 163, 69131 Ecully Cédex, France

2. Laboratoire Chimie Moléculaire et Environnement, ESIGEC-Université de Savoie, 73376 Le Bourget-du-Lac Cédex, France

Abstract

TiO2 photocatalysis and ultrasound are advanced oxidation processes for water treatment. Our study aimed at showing, via the purposely chosen title compounds, that these techniques can be complementary. For C6H5COCF3 (PTMK), the photocatalytic removal rate was higher than the ultrasonic (515 kHz) removal rate in the presence of TiO2 in the dark, whereas it was the opposite for octan-1-ol under the conditions employed. Simultaneous UV and ultrasound irradiation of the TiO2 suspension led, for PTMK, to a removal rate about equal to the sum of the removal rates observed for separate irradiations, and decreased by a factor of approximately 20% for octan-1-ol as if the photocatalytic degradation was suppressed by the dominant distribution of octan-1-ol to the cavitation bubbles. This distribution was substantiated by the large detrimental effect of octan-1-ol on the PTMK ultrasonic removal rate. The concurrent use of both techniques allowed a faster removal of both pollutants in binary mixtures. The amount of CF3COOH from PTMK was approximately eight times lower in sonicated, than in UV-irradiated, TiO2 suspensions. Several intermediate products showed the occurrence of chemical transformations occurring in and/or on the cavitation bubbles. COD decline and CO2 formation were initially higher for ultrasonic than for photocatalytic treatment. However, complete mineralization (except for CF3COOH) was achieved more rapidly by photocatalysis and even more rapidly by simultaneous use of both techniques.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3