River Water Quality Model no. 1 (RWQM1): Case study I. Compartmentalisation approach applied to oxygen balances in the River Lahn (Germany)

Author:

Borchardt D.1,Reichert P.2

Affiliation:

1. University of Kassel, Kurt-Wolters-Str. 3, D-34125 Kassel, Germany

2. EAWAG, CH-8600 Dübendorf, Switzerland

Abstract

A case study on the application of the River Water Quality Model No. 1 (RWQM1) is presented in order to illustrate the importance of modelling a sediment compartment for an ecologically meaningful assessment of the impact of wastewater effluents and combined sewer overflows. The focus of this case study is on the compartmentalisation approach of the RWQM1 that makes such a description possible. In contrast to this, a strongly simplified biochemical submodel is used that considers only oxygen and dissolved substrate. The object of the case study is the River Lahn, a moderately polluted 5th order stream in Germany, for which the connectivity of surface/subsurface flows and mass fluxes within river sediments have been intensively investigated. The hyporheic flow between a downwelling and upwelling zone of a riffle-pool sequence has been studied with the aid of tracer experiments and continuous records of water constituents. High diurnal fluctuations of oxygen travelled to considerable depth of the sediment and oxygen in the interstitial water decreased considerably while travelling through the riffle. Starting with the implementation of a strongly simplified version of the biochemical part of the RWQM1, but with the consideration of a sediment pore water compartment in addition to the water column compartment, a calibration procedure is performed using tracer data from the water column and the sediment. The calibrated model is then used to study the system response to wastewater treatment plant effluent and combined sewer overflow emissions. The modelling approach makes it possible to quantify the sediment oxygen demand and the spatial and temporal extent of sediment zones with oxygen depletion. However, the spatially averaged approach does not account for inhomogeneities in the sediment. It is shown that for this river with its alluvial coarse sediments even moderate emissions from sewerage systems may be high enough to drop sediment oxygen concentrations to low levels while those in the surface flow remain close to saturation. Similarly, it is demonstrated that combined sewer overflows may cause anoxic sediment oxygen conditions for extended time periods. The implications for ecologically sound river water quality modelling and for specific quality objectives are discussed.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3