The erosion of organic solids in combined sewers

Author:

Ahyerre M.1,Oms C.2,Chebbo G.3

Affiliation:

1. Centre d'Enseignement et de Recherche sur l'Eau, la Ville et l'Environnement,

2. Ecole Nationale des Ponts et Chaussées, 6 et 8 Avenue Blaise Pascal,

3. Cité Descartes – Champs-sur-Marne, F - 77455 Marne-La-Vallee Cedex 2, France

Abstract

Many studies undertaken on urban catchments show, thanks to indirect approaches, that the contribution of eroded sewer sediments to pollution of combined sewer overflows is significant and highly organic. An in situ study of the erosion of sewer sediments has been implemented to validate those results with a direct approach and to observe the processes of erosion. Two experiments have been carried out on a 150 m length of combined sewer in “Le Marais” catchment in Paris, in order to determine the rate of erosion and the nature of the particles eroded by an injection of drinking water in the sewer system. Hydraulic and quality parameters have been measured in situ. Those injections have shown that the rate of erosion is important (maximum rate of 146 g/s) at each stage of the injection, which has been conducted in three stages with a maximum flow of 370 m3/h. The erosion does not only occur locally but happens along the entire length of the section even at low shear stresses (0.5 N/m2). The eroded particles are highly organic (VS=54–86%) and their loads in volatile solids, COD, BOD5 decrease as the flow increases. So, this work confirms, by direct measurements, that eroded sewer sediments are a significant source of organic matter that contribute to combined sewer overflow.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3