Development of a real-time control strategy with artificial neural network for automatic control of a continuous-flow sequencing batch reactor

Author:

Cho B. C.1,Liaw S.-L.1,Chang C.-N.2,Yu R.-F.3,Yang S.-J.1,Chiou B.-R.1

Affiliation:

1. Graduate Institute of Environmental Engineering, National Central University, Chung-Li City, 32054, Taiwan

2. Graduate Insitute of Environmental Science, Tunghai University, Taichung City, 40704, Taiwan

3. Department of Safety, Health and Environmental Engineering, National Lien-Ho Institute of Technology, Miao-Li, 360, Taiwan

Abstract

The purpose of this study is to develop a reliable and effective real-time control strategy by integrating artificial neural network (ANN) process models to perform automatic operation of a dynamic continuous-flow SBR system. The ANN process models, including ORP/pH simulation models and water quality ([NH4+-N] and [NOx--N]) prediction models, can assist in real-time searching the ORP and pH control points and evaluating the operation performances of aerobic nitrification and anoxic denitrification operation phases. Since the major biological nitrogen removal mechanisms were controlled at nitritification (NH4+-N→NO2--N) and denitritification (NO2--N→N2) stages, as well as the phosphorus uptake and release could be completely controlled during aerobic and anoxic operation phases, the system operation performances under this ANN real-time control system revealed that both the aeration time and overall hydraulic retention time could be shortened to about 1.9-2.5 and 4.8-6.2 hrs/cycle respectively. The removal efficiencies of COD, ammonia nitrogen, total nitrogen, and phosphate were 98%, 98%, 97%, and 84% respectively, which were more effective and efficient than under conventional fixed-time control approach.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3