Process using DO and ORP signals for biological nitrification and denitrification : validation of a food-processing industry wastewater treatment plant on boosting with pure oxygen

Author:

Mauret M.1,Ferrand F.2,Boisdon V.2,Spérandio M.3,Paul E.3

Affiliation:

1. INSA-Transfert, Complexe Scientifique de Rangueil, 31077 Toulouse Cédex 04, France

2. Air Liquide - Centre de Recherche Claude-Delorme - 1, Chemin de la porte des Loges- BP 126 Les Loges-enJosas F78354 Jouy-En-Josas Cédex, France

3. INSA - GPI, Laboratoire d'Ingéniérie des Procédés de l'Environnement, Département GPI, Complexe Scientifique de Rangueil, 31077 Toulouse Cédex 04, France

Abstract

The simultaneous removal of carbonaceous and nitrogenous pollution by the activated sludge process is becoming common in industrial and municipal wastewater treatment plants. An oxygenation monitoring process has been developed, which is based on the dynamic analysis of ORP and DO signals and allows the detection of specific characteristic points at the end of the biological nitrification and denitrification. The aim of this study is to validate this process in a food-processing industry WWTP (slaughterhouse) having large variations of carbonaceous and nitrogenous loads. In order to treat during the peak period, pure oxygen is used. The first part of the study provides a precise diagnosis of the WWTP operation by the analysis of the ORP and DO signals. It is particularly easy to estimate the level of nitrogen treatment actually achieved and the oxygen requirements, and to detect the over- or under-oxygenated phases. Thanks to the monitoring process, the aerobic period of each cycle is reduced to the optimal duration, providing a reduction of 30% on the energy consumption compared to a traditional schedule. We have demonstrated that the use of pure oxygen associated with the existing air system is particularly relevant for the peak period. The revamping of an existing plant to simultaneously treat the carbon and the ammonia in the same basin is now technically feasible.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3