The removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands

Author:

Headley T.R.1,Huett D.O.2,Davison L.1

Affiliation:

1. School of Resource Science and Management, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia

2. Tropical Fruit Research Station, NSW Agriculture, Bruxner Hwy, Alstonville, NSW 2477, Australia

Abstract

In New South Wales (NSW) Australia, the recent introduction of legislation to control runoff and charge for water used in agricultural production has encouraged commercial plant nurseries to collect and recycle their irrigation drainage. Runoff from a nursery typically contains around 6 mg/L TN (> 70% as NO3), 0.5 mg/L TP (> 50% as PO4), and virtually no organic matter (BOD <5 mg/L; DOC <20 mg/L). As a result, algal blooms frequently occur in storage dams. This paper describes a study evaluating the effectiveness of subsurface flow wetlands in the removal of nutrients from nursery runoff on the sub-tropical northern coast of NSW, Australia. Four experimental subsurface flow wetlands (1 m×4 m×0.5 m water depth) were planted with Phragmites australis in April 1999. TN and TP load removals were > 84% and > 65% respectively at HRTs of between 5 and 2 days, with the majority of out-flowing TN and TP being organic in form. Internal generation of organic N and P resulted in persistent background levels of 0.45 mg/L TN and 0.15 mg/L TP in the reed bed effluent. TN, NH4 and TP removal was affected by HRT (P <0.05). Greater than 90% load removal of NH4, NO2, NO3 and Ortho-P was achieved at all HRTs, with outlet concentrations generally <0.01 mg/L for all. For TN, a strong relationship existed between removal rate (g/m2/day) and loading rate (r2=0.995), while a weaker relationship existed for TP (r2=0.47). It is estimated that a 1 ha nursery would require a reed bed area of 200 m2 for a 2 day HRT.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3