Affiliation:
1. Department of Chemical Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, PRC
Abstract
The photocatalytic oxidation of benzoic acid was investigated in a pilot scale-cascade photoreactor. The photoreactor consists of an array of UV lamps (40 W, 365 nm) illuminating a cascade of three inclined 316 stainless steel plates, on which titanium dioxide (TiO2) was immobilized by electrophoretic deposition. The percentage removal of total organic carbon (TOC) of liquid samples was determined. The photocatalytic process was affected by several operating parameters. Increasing the solution temperature was found to reduce the dissolved oxygen (DO) level and to decrease the rate of the degradation process. The Langmuir-Hinshelwood equation was found to be accurate for modeling the degradation of benzoic acid with initial concentrations of 50 ppm, 75 ppm and 100 ppm. The rate of removal of TOC was positively affected by UV light intensity, but appeared to be independent of solution flowrate in the range examined. Control experiments confirmed that the effects of adsorption of the solute onto the TiO2 catalysts and photolytic degradation were negligible.
Subject
Water Science and Technology,Environmental Engineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献