Biofiltration of dichlorobenzenes

Author:

Roberge F.1,Gravel M.J.1,Deschênes L.1,Guy C.1,Samson R.1

Affiliation:

1. Department of Chemical Engineering, École Polytechnique, PO Box 6079, St. “C.V.”, Montreal, QC. H3C 3A7, Canada

Abstract

The use of air biofiltration for the degradation of dichlorobenzenes (1,2-DCB and 1,4-DCB) was studied at a refinery site. At this plant, 93 m3/h of contaminated groundwater, used in a cooling system and containing a maximum of 2 ppm of dichlorobenzenes, had to be treated. Stripping of the DCBs followed by biofiltration was selected as the most suitable technology to avoid volatilization in ambient air as expected with a wastewater aerobic treatment system. A stripper of 15 m height and 1.27 m diameter was designed as a first step treatment to volatilize DCBs with 3400 m3/h of air. Two full-scale biofilters of 70 m3 each were built and filled with 45 m3 of filtering media for the adsorption and biodegradation of the DCBs in the gas-phase. Filtering media was composed mainly of peat moss, with animal manure, wood chips and DCBs contaminated soil. Air to be treated was also contaminated with naphthalene. Laboratory tests showed an effective microbial activity in the contaminated soil and in the filtering media for DCBs degradation. Degradation of naphthalene induced slower degradation of DCBs. Full-scale operation was studied during four months. Water flow and DCBs content in the water entering the stripper were lower than expected with only 57 m3/h and a maximum concentration of only 240 ppb. Effective desorption was obtained in the stripper in the full-scale operation (more than 99% removal). Full-scale biofilters maintained a DCB concentration of less than 1 ppmv in the air outlet, but removal efficiency varied between 0 and 79% because of the low DCB inlet concentrations, load variations and sporadic naphthalene presence.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3