Affiliation:
1. Urban Environmental Engineering and Management Program (UEEM), School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT), P.O. Box 4, Klong Laung, Pathumthani 12120, Thailand
2. Department of Water and Sanitation in Developing Countries (SANDEC), Swiss Federal Institute for Environmental Science and Technology (EAWAG), Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
Abstract
Constructed wetlands (CWs) have been proven to be an effective low-cost treatment system, which utilizes the interactions of emergent plants and microorganisms in the removal of pollutants. CWs for wastewater treatment are normally designed and operated in horizontal-flow patterns, namely, free-water surface or subsurface flow, while a vertical-flow operation is normally used to treat sludge or septage having high solid contents. In this study, three pilot-scale CW beds, each with a surface area of 25 m2, having 65 cm sand-gravel substrata, supported by ventilated-drainage system and planting with narrow-leave cattails (Typha augustifolia), were fed with septage collected from Bangkok city, Thailand. To operate in a vertical-flow mode, the septage was uniformly distributed on the surface of the CW units. During the first year of operation, the CWs were operated at the solid loading rates (SLR) and application frequencies of, respectively, 80-500 kg total solid (TS)/m2.yr and 1-2 times weekly. It was found that the SLR of 250 kg TS/m2.yr resulted in the highest TS, total chemical oxygen demand (TCOD) and total Kjeldahl nitrogen (TKN) removal of 80, 96 and 92%, respectively. The TS contents of the dewatered septage on the CW beds were increased from 1-2% to 30-60% within an operation cycle. Because of the vertical-flow mode of operation and with the effectiveness of the ventilation pipes, there were high degrees of nitrification occurring in the CW beds. The nitrate (NO3) contents in the CW percolate were 180-250 mg/L, while the raw septage had NO3 contents less than 10 mg/L.
Due to rapid flow-through of the percolates, there was little liquid retained in the CW beds, causing the cattail plants to wilt, especially during the dry season. To reduce the wilting effects, the operating strategies in the second year were modified by ponding the percolate in the CW beds for periods of 2 and 6 days prior to discharge. This operating strategy was found beneficial not only for mitigating plant wilting, but also for increasing N removal through enhanced denitrification activities in the CW beds. During these 2 year operations, the dewatered septage was not removed from the CW beds and no adverse effects on the septage dewatering efficiency were observed.
Subject
Water Science and Technology,Environmental Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献