Modeling effect of remaining nitrate on phosphorus removal in SBR

Author:

Kazmi A. A.1,Fujita M.1,Furumai H.1

Affiliation:

1. Department of Urban Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan

Abstract

Nitrate shock loading experiments were conducted in a bench scale SBR to investigate the effect of nitrate on phosphorus removal. After achieving satisfactory phosphorus removal under steady state operation, initial NO3-N concentration amounting to 10 and 20 mg /L was fed at the beginning of the cycle. It was observed that, 10 mg/L of NO3-N suppressed phosphorus release during the feed and mix phases. Organic consumption for denitrification lead to limited PHA storage by phosphorus removing bacteria, resulting in less PO4-P removal. For 20 mg/L, influent organic substrate was not sufficient even for complete denitrification, thus leading to the presence of higher NO3-N and PO4-P in effluent. To explain the dynamics of the nutrient removal system under the transient loading, a SBR model based on IAWQ ASM2 was implemented. After adjusting PHA contents, model simulations well predicted dynamic changes of nitrate and phosphate concentrations during a cycle. Based on the model simulations, competition of COD substrate among denitrification, fermentation and oxygen respiration were investigated by calculating their consumption rates during mixing phase. In addition, a nitrate disappearance model was proposed and implemented in conjunction with a settling model to predict remaining and effluent nitrate in a cycle of SBR. Furthermore, integrated model simulations highlighted the effect of remaining nitrate on phosphorus release considering different options of reactions in settling phase.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3