Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters

Author:

Fernández B.1,Porrier P.2,Chamy R.2

Affiliation:

1. Chemical Engineering Department, Santiago de Compostela University, Avda. das Ciencias s/n, 15706, Santiago de Compostela, Spain

2. Biochemical Engineering School, Catholic University of Valparaiso, Avda. Brasil 2147, Casilla 4059, Valparaíso, Chile

Abstract

The anaerobic systems start-up for solid waste treatment is a fundamental step, especially for those with two phases. It is necessary to know both the waste characteristics and the inoculum conditions. The objective of this work was to study the inoculum-substrate ratio (ISR) influence as a previous step of the start-up of an anaerobic system for the solid waste digestion. During this research spent grain was chosen as residue, working at three different concentrations (7; 13 and 20% w/v), studying the ISR effect in terms of anaerobic degradability (AD) and specific methane productivity (SMP). The initial acetoclastic activities (A0) were calculated based on the equation which describes the methane accumulation during each test. The model constants were also calculated and were adjusted to the experimental data. The results showed that in general the ISR variation has less impact on AD than on SMP. While maximum AD were reached in those tests with high ISR, the greatest values of SMP were with the lowest values of ISR ratio. A low ISR caused a slow hydrolysis, although the methane production was fast. So, during the start-up of a two-phase anaerobic system an elevated ISR would not be necessary in order to reach a good AD and a good intermediate products production, because the hydrolysis and the VFA production must be optimised in the first phase of these systems. While in conventional systems, where phases are together, it is much better to optimise the methane production. The ISR and the SMP indicated which inoculum percentage would be interesting based on the objective of the whole system: methane or intermediate compounds (VFA) production. All this information is important during the conventional anaerobic reactors operation because these tests would show which ISRs avoid inhibition.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3