Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands

Author:

Brix H.1,Arias C.A.2,del Bubba M.3

Affiliation:

1. Department of Plant Ecology, University of Aarhus, Nordlandsvej 68, 8240 Risskov, Denmark

2. Polytechnic University of Catalunya, Department of Hydraulics, 08034 Barcelona, Spain

3. University of Florence, Department of Analytical Chemistry, 50121 Florence, Italy

Abstract

Sorption of phosphorus (P) to the bed sand medium is a major removal mechanism for P in subsurface flow constructed wetlands. Selecting a sand medium with a high P-sorption capacity is therefore important to obtain a sustained P-removal. The P-removal capacities of 13 Danish sands were evaluated and related to their physico-chemical characteristics. The P-removal properties of sands of different geographical origin varied considerably and the suitability of the sands for use as media in constructed reed beds thus differs. The P-sorption capacity of some sands would be used up after only a few months in full-scale systems, whereas that of others would subsist for a much longer time. The most important characteristic of the sands determining their P-sorption capacity was their Ca-content. Also the P-binding capacities of various artificial media were tested (light-expanded-clay-aggregates (LECA), crushed marble, diatomaceous earth, vermiculite and calcite). Particularly calcite and crushed marble were found to have high P-binding capacities. It is suggested that mixing one of these materials into the sand or gravel medium can significantly enhance the P-sorption capacity of the bed medium in a subsurface-flow constructed wetland system. It is also possible to construct a separate unit containing one of these artificial media. The media may then be replaced when the P-binding capacity is used up.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3