Chemical pollution assessment and prioritisation model for the Upper and Middle Vaal water management areas of South Africa

Author:

Dzwairo B.1,Otieno F. A. O.2

Affiliation:

1. Durban University of Technology, Institute for Water and Wastewater Technology, P. O. Box 1334, 4000, South Africa

2. Durban University of Technology, Deputy Vice Chancellor: Technology, Innovation and Partnerships, P. O. Box 1334, 4000, South Africa

Abstract

A chemical pollution assessment and prioritisation model was developed for the Upper and Middle Vaal water management areas of South Africa in order to provide a simple and practical Pollution Index to assist with mitigation and rehabilitation activities. Historical data for 2003 to 2008 from 21 river sites were cubic-interpolated to daily values. Nine parameters were considered for this purpose, that is, ammonium, chloride, electrical conductivity, dissolved oxygen, pH, fluoride, nitrate, phosphate and sulphate. Parameter selection was based on sub-catchment pollution characteristics and availability of a consistent data range, against a harmonised guideline which provided five classes. Classes 1, 2, 3 and 4 used ideal catchment background values for Vaal Dam, Vaal Barrage, Blesbokspruit/Suikerbosrant and Klip Rivers, respectively. Class 5 represented values which fell above those for Klip River. The Pollution Index, as provided by the model, identified pollution prioritisation monitoring points on Rietspruit-W:K2, Natalspruit:K12, Blesbokspruit:B1, Rietspruit-L:R1/R2, Taaibosspruit:T1 and Leeuspruit:L1. Pre-classification indicated that pollution sources were domestic, industrial and mine effluent. It was concluded that rehabilitation and mitigation measures should prioritise points with high classes. Ability of the model to perform simple scenario building and analysis was considered to be an effective tool for acid mine drainage pollution assessment.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3